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Abstract 

How does the mobility of inventors and the structure of social networks influence knowledge flow 

across innovating firms? Do well connected incoming inventors increase the value of innovation at the 

firm or is this effect coming from those who have access to a diverse pool of knowledge? In order to 

answer the above central questions of the organizational learning literature we construct a co-inventor 

network based on all IT-related patents from the harmonized OECD PATSTAT database that contains 

patents from 1977 to 2013. Variables derived from the network are introduced into a firm level 

difference-in-differences inventor mobility model, in which the dependent variable is the growth of 

accumulated number of citations of the receiving firm. Our findings imply that the more contacts an 

inventor has in the network the higher impact she has on the value of innovation. The model verifies 

the structural hole hypothesis as well; in general, those inventors have a higher impact on innovation 

value who have access to non-redundant knowledge. However, a closer look reveals a reverse U-

shaped effect of Burt’s constraint on innovation quality. Thus, there might be level of redundancy in 

the inventor’s network, which is optimal for creating high quality innovations. 

JEL codes: C31, J69, O31 

Keywords: degree, Burt’s constraint, difference-in-differences, OECD HAN database, patent citations. 
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 1. Introduction 

The mobility of inventors has long been considered as the major source of knowledge flow across 

inventing firms (Almeida and Kogut 1999, Arrow 1962, Levin et al. 1987, Palomeras and Melero 2010). 
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Mobility of inventors is important because firms benefit from the tacit or embodied knowledge of 

incoming productive inventors (Zucker et al. 2002). It is also well understood that firms need to hire 

inventors who possess technological expertise distant from the hiring firm because then the firm 

obtains inflow new knowledge by the inflow (Rosenkopf and Almeida 2003, Song et al. 2003). 

Furthermore, incoming inventors also bring their professional networks to the firm (Agrawal et al. 

2006, Breschi and Lissoni 2005, 2009); thus, communication with previous colleagues can provide the 

hiring firm with additional access to external knowledge (Ethridge et al. 2015, Powell et al. 1996). The 

joint effect of inventors’ mobility and their co-inventor networks is a very important though under-

researched phenomenon; this is the niche we address in the recent paper. 

Collaboration networks are crucial in understanding innovative success, in which the structure of the 

network and the position of the firm or the inventor determines the variety of knowledge access and 

therefore are considered as major underlying factors for innovation (Borgatti and Cross 2003, Capaldo 

2007, Ibarra 1993, Inkpen and Tsang 2005, Schilling and Phelps 2007, Singh 2005, Sorenson et al. 2006, 

Sparrowe et al 2001, Uzzi 1997).  The structural hole hypothesis is one of the most reflected 

propositions in this regard claiming that those firms or individuals –often called brokers– produce more 

radical innovations whose contacts represent non-redundant parts of the network (Burt 2004, 

Granovetter 1973). However, there is no clear evidence on the above theory because innovation can 

be produced in a cohesive network and also in a network with structural holes depending on the role 

of social capital in the process of innovation (Burt 1987). On the one hand, the innovation output of 

the firm is found to depend more on the number of connections but structural holes were found to 

have a negative effect (Ahuja 2000, de Vaan et al. 2015). On the other hand, Fleming et al. (2007) found 

a positive effect of brokering on innovation output of individuals. 

Certainly, the mobility of inventors and the co-inventor networks are not independent from each 

other; the network is generated as the inventor moves from one firm to another (Casper 2007, Lee 

2010). Networked inventors are more productive and therefore firms can be more motivated in hiring 

them away (Nakajima et al. 2010). However, evidence shows a reversed causality; mobility increases 

the productivity of inventors because they learn from job switching, whereas productive inventors and 

the likelihood (Hoisl 2007). Therefore extra attention shall be paid for the endogen connection 

between mobility and network formation in an integrated framework. 

In this paper we estimate a difference-in-difference inventor mobility model based on all IT-related 

patents from the harmonized OECD PATSTAT database that contains patents from 1977 to 2013. The 

dependent variable is the cumulative change of citations to the patents, which is closely associated 

with the value of innovations (Harhoff et al. 1999), owned by the hiring firm after the observing the 

inventor mobility. The two explanatory variables in the model are the number of connections (degree) 

and cohesion in the inventors’ ego network (Burt’s constraint indicator).  

Our findings imply that the more contacts an inventor has in the network the higher impact she has on 

the value of innovation at the hiring firm. The model verifies the structural hole hypothesis as well; in 

general, those inventors have a higher impact on innovation value who have access to non-redundant 

knowledge and whose network is less cohesive. However, a closer look reveals a reverse U-shaped 

effect of Burt’s constraint on innovation quality. Thus, there might be level of redundancy in the 

inventor’s network, which is optimal for creating high quality innovations. 
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2. Data 

Co-inventor network and inventor mobility matrices are constructed from patents filed by the 

European Patent Office (EPO) from the OECD Patent Database over the 1977-2013 period. We 

downloaded the dataset directly from the OECD FTP servers in February 2015 and constructed a 

relational database that merged three kinds of datasets from the OECD Patent Database.  

1. OECD REGPAT database version February 2015 covers patent documents filed by the EPO 

(derived from PATSTAT 2014 autumn edition). There are unique identifiers for patents, 

applicants, and inventors in the data that can be matched with other sources in the database. 

The technological classes of the patents as well as the year of application are present in the 

table. The EPO data contains 2,750,644 patent documents authored by 594,461 inventors.  

2. OECD HAN (Harmonized Applicant Names) database version February 2015 contains the 

cleaned and matched names of patent applicants. Although OECD statisticians warned us that 

the data might encounter mismatches and errors; this is the best freely available and ready to 

use dataset that enable researchers to trace patenting firms.  There are 2,837,597 unique 

applicants identified in the HAN database. 

3. OECD Citations database version February 2015 contains citations of EPO patents in EPO, PCT 

or USPTO. The data is derived from EPO’s PATSTAT database, autumn 2014.  The OECD Citation 

database mainly derives from the infrastructure proposed in Webb et al. (2005). There are 

99,449,770 unique citations in the data. 

These datasets have been merged by the patent identifiers. Then, we narrowed down the database to 

the G06 IPC1 code that refers to “Computing, calculating and counting”. This technological class suits 

our research question (Fleming et al 2007), because programming is a highly innovative process in 

which fixed costs are relatively and therefore learning through mobility and social networks might play 

a more important role than in other technological areas. 

The co-inventor network is constructed from an inventor-patent co-occurrence table and two 

inventors are connected if they co-author a patent together. The edges were created two years prior 

the year of application because we assume that the inventors work together before they submit the 

patent application, which is often made in the literature. We also take that supposition that co-

inventors stay in contact after inventing together. They might exchange information, ask for advice 

and follow each other’s career or inventing activity.  

We deem an inventor mobile if she authored at least two patents filed by at least two applicants under 

our investigated time period. Mobility from applicant A to applicant B is detected at the year when the 

patent application filed by B is submitted to the EPO. 

Appendix 1 and 2 contain descriptive figures about the number of inventors and applicants of the 

investigated data over the full period. 

 

                                                           
1 The International Patent Classification (IPC) provides for a “hierarchical system of language independent 
symbols for the classification of patents and utility models according to the different areas of technology to 
which they pertain”. 
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3. Methods 

3.1 The difference-in-differences approach 

The focus of the paper is the effect of incoming inventors on the quality of innovations of the hiring 

firm. In particular, our intention is to show how the mobility of well-connected inventors and broker 

inventors with coherent ego networks influence the accumulated number of citations. 

A major problem is that highly connected and broker (therefore more productive) inventors are more 

likely to move to more productive firms because they promise a further step in their career, a new 

learning possibility and good quality innovation.  This is a typical endogeneity issue and our model has 

to control for observable and unobservable firm attributes that might cause inventor mobility. The 

difference-in-differences (diff-in-diff) approach is a simple solution for the above problem. These 

models are applied when the independent variable is available in the data before and after the specific 

action that the researchers are interested in (Albouy 2004), which are often called treatment or 

experiment. The advantage of the diff-in-diff method is that it can avoid many of the emerging 

endogeneity problems while comparing heterogeneous individuals (Meyer 1995). 

In our particular case, the outcome is the accumulated number of citations to the patents owned by a 

firm and the treatment is the inventor’s mobility. The model gives an estimation on the effect of 

inventor mobility on citation counts by comparing citations before and after the treatment and also by 

comparing the outcome of the treated firms with the outcome of the non-treated firms. Thus, the 

observations were assigned into two groups: 1, the treated group, those firms that hired a new 

inventor from another firm; and 2, a control group of non-treated firms that did not receive inventors. 

Treatment T is a binary variable that determines if the firm gets the treatment or not. An observation 

are present in the model twice: before (indicated by 0) and after the treatment  (indicated by 1). 

In a diff-in-diff model the outcome Yi  is estimated by the following equation: 

  𝑌𝑖 = 𝛼 + 𝛽𝑖𝑇𝑖 + (𝛾1 − 𝛾0)𝑡𝑖 + 𝛿(𝑇𝑖) + 𝜀𝑖,    (1) 

where Yi denoted the number of citations at firm i; βi is the difference between the control and the 

treatment group which comes from the constant differences between the firms; Ti ∈ {0,1} equals 1 if 

the firm is treated and 0 otherwise and εi is the error term. The δ term denotes the impact of the 

mobility of inventors.  

This latter impact is calculated by assuming parallel trends of the outcome variable in the treatment 

and the control group. Making this assumption, we can approximate the value of the outcome in the 

treatment group that would occur in the absence of the treatment itself. The comparison of outcomes 

between the treated and control observations is formulated by: 

  𝛿̅ = (𝐸[𝑌𝑇=1
1̅̅ ̅̅ ̅̅ ] − 𝐸[𝑌𝑇=0

1̅̅ ̅̅ ̅̅ ]) − (𝐸[𝑌𝑇=1
0̅̅ ̅̅ ̅̅ ] − 𝐸[𝑌𝑇=0

0̅̅ ̅̅ ̅̅ ])   (2) 

The first term refers to the differences in outcomes before and after the treatment for the treated 

group. This term may be biased if there are time trends. The second term uses the differences in 

outcomes for the control group to eliminate this bias.   
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The assumption of parallel trends is the main limitation of the difference-in-differences approach; the 

accomplishment of the control group should reflect what would happen to the treated group with the 

lack of the treatment. The parallel trends assumption that we assigned as (γ1 − γ0)ti  cannot be 

directly tested because we want to compare two world states of one firm, but this is obviously 

counterfactual. One cannot observe the dynamics of the treatment group without the treatment; firms 

are either treated, or they are not.  Other problem is that it is often very hard or even impossible to 

check the suppositions about the unobservable entities and therefore the estimates of the treatment 

effect may be biased. 

There is a recent debate about the validity of the difference-in-differences method. Abadie (2005) 

discusses group comparisons in non-experimental studies; Athey and Imbens (2002) concern the 

interference in difference-in-differences because of the linearity assumption, Besley and Case (1994) 

criticize whether this method really can detangle the possibility of endogeneity and Duflo (2002) 

focuses on issues related to the standard error of the estimates.  

 

3.2 Explanatory variables: degree and constraint in the co-inventor network 

Social capital theory emphasize that personal contacts have value because individual learn from their 

peers, which can create an advantage and benefits for the individual (Bourdieu and Wacquant 1992, 

Coleman 1988). For instance Putnam (1995) says social capital can be measured by the amount of trust 

and “reciprocity” in a community of individuals. The contention comes from what “better connected” 

means (Burt 2002).  

One of the easiest method to measure a node’s social capital and access to knowledge in the network 

is degree. Because the co-inventor network is non-directed we cannot distinguish indegree (the 

amount of ties that go to the node) and outdegree (the amount of ties that go from the node). The 

degree of inventor i in the co-worker network at time t is defined as: 

  𝑑𝑖 = # 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠,       (3) 

In the research context, degree means the number of unique inventors whom inventor i has worked 

with. According to a widely accepted proposition, the greater degree the bigger access to knowledge; 

because a high-degree inventor can collect information or discuss innovation-related issues with many 

colleagues. 

However, degree itself cannot capture all the social capital and knowledge-access characteristics of 

inventors, which are attributed to the structure of the ego-networks. Therefore, we use the well-

known constraint indicator defined by Burt (1992), which measures whether an inventor is situated in 

a coherent network or in a structural hole. To put this into our context, the question is whether an 

inventor with access to redundant or non-redundant knowledge have more impact on innovation 

quality. 

According to Burt (1992), non-redundant information flow into a group of individuals through contacts 

to distant groups and these weak connections between groups are holes in the social structure. These 

holes represent an opportunity for those broker individuals who connect the groups and control the 

information flow between the opposite sides of the holes (Burt 2000).   
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The constraint index Ci is the network constraint on individual i, which means the concentration of 

the individual’s connections within a group (Burt 2008) and can be formulated by: 

  𝐶𝑖 = ∑ 𝐶𝑖𝑗𝑗  𝑖 ≠ 𝑗,       (4) 

where Cij means i’s dependency from j:  

  𝐶𝑖𝑗 = (𝑝𝑖𝑗 + ∑ 𝑝𝑖𝑞𝑝𝑞𝑗𝑞 ) 2 𝑖 ≠ 𝑞 ≠ 𝑗,    (5) 

where pij = zij ∑ ziqq⁄  and zij assigned to strength of i’s effort to connect j. So Cij can quantify the 

resources directly (pij) or indirectly (∑ piqpqj)q  spent to contact j. 

According to a major claim in innovation studies, a structural hole position provides an inventor with 

the opportunity to combine non-redundant knowledge and produce radical innovations. However, a 

variety of evidence illustrates that the picture is far more complex (Fleming et al. 2007, de Vaan et al 

2015). 

Even Burt (2000, at p. 11) implemented the constraint indicator with limitations: 

“If a network has lots of structural holes as the source of social capita, then the 

performance should have a negative association with network constraint.  If the 

network closure is the source of social capital, then performance should have a 

positive association with constraint. 

Therefore we can say that bridges through structural holes is the source of the ideas 

of the new inventions but trustful communication due highly connected individuals can 

be as much as important to realize the value lies in structural holes.”   

An important intuition that one can get from the above statements is that there might be a level of 

structural holes and coherence in the network, which is optimal for innovation quality.  

 

4. Results 

Our results confirm that the more linked inventors have a greater impact on innovation quality at the 

hiring firm and that broker innovators increase the quality of innovation more than non-brokers. 

However, we find a reversed U-shape effect regarding the effect of ego-network cohesion on 

innovation quality. 

 

4.1 Network description 

The large co-inventor network resembles the properties of scale-free networks. The degree 

distribution can be described by a power-law; the relative share of the degree decreases exponentially 

as d grows (Figure 1A). This means that most of the inventors have very few connections and there are 

very few inventors who have many connections. However, there are certain degrees (around d=30) 

that have a significantly higher shares than the power-law would suggest. These outliers are due to 

those patents that were co-invented by many inventors who, thus, are all connected to each other and 
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have a high degree. These outliers are not visible when looking at the smoother kernel density figure 

of degree (Figure 1B). 

 

(A) 

 

(B) 

 
(C) 

 

(D) 

 
Figure 1. Centrality distributions. (A) Degree distribution of the co-inventor network, logarithmic scale, 2013. 

(B) Kernel density of degree, 2013. (C) Kernel density of constraint, 2013. Nodes with degree=2 were excluded 

from constraint calculation. (D) Dynamics of average degree (d) and average constraint (c), 1977-2013. Nodes 

with degree=2 were excluded from constraint calculation. 

 

The constraint indicator (c) takes its’ value between 0 and 1; the higher the indicator the more knit the 

ego-network of the inventor, because her connections also know each other. Differently, a low value 

of c means that the inventor is a broker because she connects groups that are otherwise unconnected. 

One can find a growing distribution of c in Figure 1C, which means that only a low share of the inventors 

are brokers and the majority is located in very cohesive groups where all inventors are connected2.  

Naturally, d and c are not independent from each other, because the larger number of connections an 

inventor has the smaller probability that these connections will also know each other. Accordingly, we 

find a very strong negative correlation (-0.941) between d and c in year 2013. One can also find a 

                                                           
2 Constraint calculation is possible for nodes with d=2 but interpretation is not straightforward and thus we 
eliminate these nodes from Figure 1.  
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divergent trend of average d and average c over time (Figure 1D), which suggests that there more and 

more brokers appear in the network over time who connect otherwise disconnected groups.  

 

Table 1. Components of the co-inventor network, 2013 

Inventors 2 3 4 5-10 11-20 21-50 51-100 101- 

# Components 27,207 17,768 10,276 14,046 1,701 461 62 40 

Avg. Degree 1 1.957 2.884 4.678 7.138 8.238 8.186 9.001 

Avg. Constraint N.A. 1 0.921 0.671 0.495 0.467 0.482 0.491 

 

Despite the growing number of brokers, the co-inventor network contained 71,561 isolated 

components in year 2013. The components of the network are not connected to each other, thus the 

network has a very fragmented structure. The vast majority of the components contain only a small 

number of nodes (Table 1), 77% of the components have less than five nodes. However, there are also 

a considerable number of large components that account for many inventors. It is illustrated in Table 

1 that the inventors in large components have more connections on average than in small components. 

The average value of constraint decreases as well as the size of the components grows, which means 

that brokers might be found in large components. However, the value of average constraint does not 

seem to decrease monotonously, the value in the largest components are almost identical to the 

components of 11-20 inventors. 

We visualize the largest components of the co-inventor network in Figure 2 by using distinct color 

codes for each component. Figure 2A reveals that these large components have similar structures; 

they contain closely connected groups of inventors that are loosely connected to each other in the 

component. It is very interesting to zoom into the two largest components (Figures 2B and 2C), which 

can reveal the most important point in our argument. 

The largest network in Figure 2B contains relatively small closely connected groups, in which inventors 

have all worked with each other on a patent. These groups are linked by few brokers who have worked 

with at least one inventor in one closely connected group and at least one inventor in another closely 

connected group. Brokers are claimed to have access to non-redundant knowledge in the network, 

because their colleagues did not work with each other and therefore have arguably different 

knowledge. The structural hole hypothesis states that the brokers are more likely to introduce radical 

innovations than non-brokers, because they can combine non-redundant knowledge in the knowledge 

creating process.  
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 (A) 

 
(B) 

 

(C) 

 
Figure 2. The largest components in the co-inventor network, 2013. (A) The components that have more than 

100 inventors, 2013. Force Atlas 2 algorithm was used. (B) The largest component containing 717 inventors, 

2013. Fruchterman-Reingold algorithm was used. (C) The second largest component containing 504 inventors, 

2013. Fruchterman-Reingold algorithm was used. 

 

The second largest network in Figure 2C has a somewhat different structure. The closely connected 

groups are large and the networks of these groups are full, which means that all of the concerning 

inventors have worked with each other.  The inventors in these cohesive groups have arguable 

developed a high level of trust because everyone knows everyone and their co-operation among them 
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might be smoother as compared to less connected parts in the network. However, there is a high level 

of redundancy in the knowledge-access of inventors in these full groups. All the peers of an inventor 

have similar experience is such groups, which reduces the likelihood of radical innovation produced by 

the inventor.  

Burt’s constraint indicator described in section 3.2 is meant to capture if the inventor is situated in a 

structural hole or in a cohesive network. If the indicator is low, the contacts of the inventor are not 

connected and she is a broker; if the indicator is high, the contacts of the inventor are connected and 

she is a cohesive group of the network. Because there are contradictory evidence regarding the role 

of structural holes and cohesive networks in the quality of innovation, we will discuss the effect of the 

constraint indicator in an inventor mobility diff-in-diff model.  

 

4.2 Mobility, co-inventor networks and innovation quality 

We estimate the diff-in-diff model described in section 3.1, in which the dependent variable is the 

change of cumulated number of citations received by the patents owned by an applicant over ten years 

after a treatment. It is important to look at citations over a long period for two reasons. First, the 

fluctuations of technological change and the jumps in citations can be smoothed out, so that the 

quality of a patent can be proved by the number of citations to it, indeed. Second, the long term change 

in the dependent variable the lower chance of endogenity in the model.  

Our main explanatory variables are the node indicators of inventors calculated in the co-inventor 

network for every year. Thus, the co-inventor network is a dynamically changing network, which is due 

to new edges established in the network by co-authoring new patents, and therefore the number of 

connections and the cohesiveness of the ego-network of inventors are calculated for every year and 

for every inventor. However, when estimating the diff-in-diff model, we have to consider the possibility 

that not only one inventor enters the firm at once because the applicant might submit more than one 

patent applications and also because the patent itself might be authored by more than one inventor 

who is new to the firm.  

Therefore, the DEGREE variable denotes the mean number of connections and the CONSTR indicator 

is the mean constraint of the incoming inventors. The number of incoming inventors (INVNR) is also 

included in the model, which is an additional control for the group size effect. The above mean values 

are sufficient proxies for capturing the connectedness and broker qualities of the incoming inventors3. 

The higher average degree of the group of inventors the wider access to knowledge by an average 

group member. In a similar manner, a higher mean value of constraint across incoming inventors 

denotes a more cohesive network.  

Two control variables are used: the number of total citations to the patents owned by the applicant at 

the time of the treatment (CITCUM) and the number of patent applications within ten years after the 

                                                           
3 The models have been run with alternative indicators as well, in which the aggregated value of degree and 
constraint was used as explanatory variables. Because these are linear transformations, the model outcomes 
did not differ. 
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treatment (D10PATENTS). All the dependent, explanatory and control variables have been log-

transformed. 
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Table 2. Variable description and Pearson correlation 

 Variable Obs Mean Std. Dev. Min Max 1 2 3 4 

1 INVNR 308,446 0.0401 0.4645 0 40 1.0000    

2 DEGREE 308,446 0.0897 1.4995 0 157 0.3590* 1.0000   

3 CONSTR 308,446 0.0089 0.0809 0 1 0.4896* 0.2621* 1.0000  

4 CITCUM 307,614 7.5383 177.3295 0 25,990 0.1000* 0.0297* 0.0550* 1.0000 

5 D10PATENTS 104,117 7.2614 74.1256 0 4,037 0.3195* 0.1685* 0.2006* 0.3030* 

Note: * denotes significance of pairwise Pearson correlation at the 0.01 level. 
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As explained in section 3.1, the observations in the model are firms by year and the data contains all 

for firms including those who did and also those who did not receive any treatment over the period 

(Table 3). Therefore, the minimum values of the indicators are zero. The number of observations for 

D10PATENTS are smaller, because it was not possible to calculate this indicator for firms that were 

treated after 2003. The low value of Pairwise Pearson correlation coefficients suggests that all the 

indicators can be introduced into the linear regression models and multicollinearity is not a threat.  

The results of the diff-in-diff models can be found in Table 4. Models 1-6 are pooled OLS regressions 

with year fixed effects and explanatory variables and their quadratic terms are introduced into the 

models stepwise. The treatment variable (T) has a positive and significant effect in each model, which 

means that the number of citations grew more in those firms that received treatment as compared to 

those that didn’t.  

We find that INVNR has a positive and significant effect while its quadratic term has a negative and 

significant effect. This finding suggests that the more inventors come to the firm the higher number of 

citations the firm will get over time. However, decreasing marginal effects are operating, inventor 

number increases citation growth with decreasing intensity. 

DEGREE has a positive and significant effect on citation growth. This implies that the number of 

inventors whom the incoming inventors have connections to matters for the innovation processes in 

the firm. The incoming inventors bring their professional ties whom they can contact if an innovation 

related issue emerges. The finding suggest that social capital increases the effect of inventor mobility 

on innovation quality, the bigger number of such connections, the higher value of innovation at the 

firm. However, DEGREE loses significance in Model 6, when introduced together with other regressors. 

The most interesting finding concerns the CONSTR variable. It has a significant negative value when 

introduced alone or with other explanatory variables (Model 3 and Model 5), which means that the 

structural hole hypothesis of social capital prevails in the inventors’ mobility effect on the quality of 

innovation. Those broker inventors, who establish a link between otherwise unconnected groups and 

therefore have access and might combine non-redundant knowledge, have a greater impact on 

innovation quality than non-brokers. However, the introduction of the quadratic term (Models 4 and 

6) reveals a very important finding: the general negative effect can be broken into two very strong and 

contradictory effects. This result implies that the effect of CONSTR on citation counts can be an 

inversed U-shaped curve; some cohesion is needed in ego-networks but very cohesive networks are 

not good for innovation quality. Therefore, one might propose that innovation quality might need an 

optimal level of network cohesion (or broker quality). 

Both our control variables have positive and significant effect in all models. Models 7-9 are fixed effect 

panel regressions that confirms the previous findings.  
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Table 3. Pooled OLS and FE regressions. dependent variable: 10 years difference of cumulate citation of firms 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 OLS OLS OLS OLS OLS OLS FE FE FE 

INVNR 0.105384***    0.094803*** 0.085199**   0.033515*** 

 (0.032)    (0.033) (0.034)   (0.011) 

INVNR2 -0.004850***    -0.004609*** -0.004298***   -0.000452 

 (0.002)    (0.002) (0.002)   (0.000) 

DEGREE  0.024902**   0.012128* -0.000523 0.011793**  -0.000725 

  (0.010)   (0.007) (0.013) (0.005)  (0.005) 

DEGREE2  -0.000213    0.000218 -0.000236  -0.000029 

  (0.000)    (0.000) (0.000)  (0.000) 

CONSTR   -0.221012** 0.898829*** -0.211030** 0.672306*  0.368762*** 0.236158* 

   (0.095) (0.320) (0.096) (0.380)  (0.135) (0.141) 

CONSTR2    -1.107251***  -0.880465**  -0.431191*** -0.303698** 

    (0.301)  (0.365)  (0.118) (0.128) 

T 0.805206*** 0.888174*** 1.082699*** 0.941812*** 0.873243*** 0.823660*** 0.087545*** 0.102220*** 0.059622* 

 (0.063) (0.049) (0.058) (0.067) (0.076) (0.078) (0.021) (0.029) (0.034) 

CITCUM 0.001006*** 0.001019*** 0.001022*** 0.001016*** 0.001007*** 0.001006*** 0.000341*** 0.000341*** 0.000326*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

D10PATENTS 0.004848*** 0.004862*** 0.004871*** 0.004840*** 0.004855*** 0.004839*** 0.001752*** 0.001748*** 0.001732*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

CONSTANT 0.758407*** 0.756356*** 0.755084*** 0.759662*** 0.757452*** 0.759838*** 0.834747*** 0.834728*** 0.834778*** 

 (0.279) (0.279) (0.279) (0.278) (0.279) (0.279) (0.003) (0.003) (0.003) 

YEAR FE Yes Yes Yes Yes Yes Yes No No No 

HAN FE No No No No No No Yes Yes Yes 

ADJ. R-SQ 0.182 0.182 0.182 0.182 0.182 0.182 0.030 0.030 0.031 

N 104.117 104.117 104.117 104.117 104.117 104.117 104.117 104.117 104.117 

Note: Standard errors in parentheses. * p<0.10. **p<0.05. *** p<0.01. 
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5. Discussion 

In this paper we estimated a difference-in-difference inventor mobility model, in which the dependent 

variable is the cumulative change of citations to the patents owned by the hiring firm after the 

observing the inventor mobility. The two explanatory variables in the model are the number of 

connections (degree) and cohesion in the inventors’ ego network (Burt’s constraint indicator). Our 

findings imply that the more contacts an inventor has in the network the higher impact she has on the 

value of innovation at the hiring firm. The model verifies the structural hole hypothesis as well; in 

general, those inventors have a higher impact on innovation value who have access to non-redundant 

knowledge and whose network is less cohesive. However, a closer look reveals a reverse U-shaped 

effect of Burt’s constraint on innovation quality. Thus, there might be level of redundancy in the 

inventor’s network, which is optimal for creating high quality innovations. However, few empirical 

issues limit the implications of the results and further research steps shall solve these problems.  

First of all, edges in the co-inventor network might loose from their weight over time or even cease to 

exist after few years. Therefore, edge aging has to be taken care of in the next version of the paper 

and we shall check the robustness of our results by excluding the old ties from the network. Second, 

recently unobserved effects shall be controlled for in the regression models. For example, productivity 

or quality of the sending firm and productivity of the mobile inventor might have a positive effect on 

innovation quality. Inventors who come from highly innovative firms or those mobile inventors 

themselves who are very productive are very important for innovation and these effects shall be 

included into the models. Third, alternative dependent variables shall be analyzed. For example, a we 

might calculate the cumulative change of citations by each patent the firm has because the aggregation 

to the firm level might be misleading in large firms that have many patents.  
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Appendix 1: Number of patent applications by year and country 
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Appendix 2. Number of inventors by year and country 

  

 


